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Statistical properties of functionals of the paths of a particle diffusing in a one-dimensional
random potential
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We present a formalism for obtaining the statistical properties of functionals and inverse functionals of the
paths of a particle diffusing in a one-dimensional quenched random potential. We demonstrate the implemen-
tation of the formalism in two specific examples: (1) where the functional corresponds to the local time spent
by the particle around the origin and (2) where the functional corresponds to the occupation time spent by the
particle on the positive side of the origin, within an observation time window of size t. We compute the
disorder average distributions of the local time, the inverse local time, the occupation time, and the inverse
occupation time and show that in many cases disorder modifies the behavior drastically.
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I. INTRODUCTION

The statistical properties of functionals of a one-
dimensional Brownian motion have been extensively studied
and have found numerous applications in diverse fields
ranging from probability theory [1-3], finance [4—6], meso-
copic physics [7], and computer science [8] and in under-
standing weather records [9]. The position x(7) of a one-
dimensional Brownian motion evolves with time 7 via the
Langevin equation

L (1)

dr
starting from x(0)=x,, where 7(7) is a thermal Gaussian
white noise with mean (#7(7))=0 and a correlator
(p(7)n(7'))=8(7—7"). A functional T is simply the integral
up to time #:

T= ft V(x(7)dr, (2)
0

where V(x) is a prescribed non-negative function whose
choice depends on the specific observable of interest. For a
fixed initial position x, of the Brownian motion and a fixed
observation time ¢, the value of T varies from one history or
realization of the Brownian path {x(7)} to another (see Fig. 1)
and a natural question is, what is the probability density
function (PDF) P(T|t,x,)?

Following the path integral methods devised by Feynman
[10], Kac showed [1,2] that the calculation of the PDF
P(T|t,x,) can essentially be reduced to a quantum mechanics
problem: namely, solving a single-particle Schrodinger equa-
tion in an external potential V(x). This formalism is known in
the literature as the celebrated Feynman-Kac formula. Sub-
sequently, this method has been widely used to calculate the
PDF of T with different choices of V(x) as demanded by
specific applications. This has been reviewed recently in Ref.
[8]. In particular, the two most popular applications corre-
spond, respectively, to the choices V(x)=48(x—a) and V(x)
=0(x), where &(x) is Dirac’s delta function and 6(x) is the
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Heaviside step function. In the former case, the correspond-
ing functional T(a)=[{8(x(7)—a)d has the following physi-
cal meaning: T(a)da is just the time spent by the particle in
the vicinity of the point a in space—i.e., in the region [a,a
+da]—out of the total observation time ¢. Note that, by defi-
nition, [T(a)da=t. The functional T(a) is known as the “lo-
cal time” (density) in the literature. In the second case V(x)
= 6(x), the functional 7= [{,6(x(7))d measures the time spent
by the particle on the positive side of the origin out of the
total time 7 and is known as the “occupation” time. The prob-
ability distribution of the occupation time was originally
computed by Lévy [11], [oP(T' t,O)dT’z% arcsin(\VT/1),
and is known as the arcsine law of Lévy. Since then, the local
and occupation times for pure diffusion have been studied
extensively by mathematicians [12-17]. Recently, the study
of the occupation time has seen a revival in the physics lit-
erature and has been used in understanding the dynamics out
of equilibrium in coarsening systems [18,19], ergodicity
properties in anomalously diffusive processes [20,21], in re-
newal processes [22], in models related to spin glasses [23],
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FIG. 1. Schematic plots of T defined by Eq. (2) as a function of
t, corresponding to four different realizations of the paths [{x(7)},
for 0<7=<1] denoted by R, R, R3, and R, respectively. For fixed ¢
(¢, 1y, 13, Or 14, shown by vertical dashed lines), T takes different
value for different realizations. On the other hand, for a fixed T
(horizontal dashed line) the corresponding ¢ is different for different
realizations: ¢, for Ry, t, for R,, t3 for R3, and t, for Ry.
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in simple models of blinking quantum dots [24], and also in
the context of persistence [25,26]. Local and occupation
times have also been studied in the context of stochastic
ergodicity breaking [27], first-passage time [28], diffusion-
controlled reactions activated by catalytic sites [29], and dif-
fusion on graphs [30,31]. In polymer science, a long flexible
polymer of length 7 is often modeled by a Brownian path up
to time ¢. In this context, the local time at a position 7 is
proportional to the concentration of monomers at 7 in a poly-
mer of length 7.

A natural and important question is how to generalize the
Feynman-Kac formalism to calculate the statistical proper-
ties of the functionals of the type in Eq. (2) when x(7) is not
just a pure diffusion process, but represents the position of a
particle in an external random medium. While various prop-
erties of diffusion in random media have been widely studied
in the past [32-35], the study of the statistical properties of
functionals in random media is yet to receive its much de-
served attention. In this paper we undertake this task. More
precisely, we are interested in calculating the PDF P(T|t,x,)
of a functional T as in Eq. (2) where x(7) now evolves via the
Langevin equation

= Rl + (o) 3)

where 7(7) represents the thermal noise as in Eq. (1) and
F(x)=-dU/dx represents the external force, the derivative of
the potential U(x), felt by the particle. Most generally, the
external potential consists of two parts, U(x)=U,(x)+ U,(x),
a deterministic part U,(x) and a random part U,(x). The ran-
dom part of the potential U,(x) is “quenched” in the sense
that it does not change during the time evolution of the par-
ticle, but fluctuates from one sample to another according to
some prescribed probability distribution. Consequently, the
PDF P(T|t,x,) will also fluctuate from one sample of the
random potential to another and the goal is to compute the
disorder-averaged PDF P(T|t,x,) where the overbar denotes
the average over the distribution of the random potential. A
popular model for the random potential is the celebrated Si-
nai model [36], where various disorder-averaged physical
quantities can be computed analytically [32,33,37-42], and
yet the results exhibit rich and nontrivial behaviors and also
capture many of the qualitative behaviors of more complex
realistic disordered systems. The Sinai model assumes that
U,.(x)=\oB(x) where B(x) represents a Brownian motion in
space—i.e.,

dB
PRt (4)

where &(x) is a Gaussian white noise with mean (&(x))=0
and a correlator (&(x)&(x"))=8(x—x"). The constant o repre-
sents the strength of the random potential.

In this paper, we first present a generalization of the
Feynman-Kac formalism to calculate the PDF P(T|t,x,)
in the presence of an arbitrary external potential U(x).
To obtain explicit results using this formalism, we next as-
sume that the random part of the potential is as in the
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Sinai model—i.e., that our external potential is of the form
U(x)=U (x)+\oB(x), where B(x) is a Brownian motion in
space and U,(x) is the nonrandom deterministic part of the
potential. It turns out that the asymptotic behavior of the
disorder-averaged PDF P(T|t,x,), quite generically, has
three different qualitative behaviors depending on the curva-
ture of the deterministic potential U,(x)—i.e., whether U (x)
has a convex (concave-upward) shape representing a stable
potential (i.e., attractive force towards the origin), a concave
(concave-downward) shape representing unstable potential (a
repulsive force away from the origin), or just flat indicating
the absence of any external potential. To facilitate an explicit
calculation, we model the deterministic potential simply by
U, (x)=—u|x|, so that w<0 represents a stable potential,
m >0 represents an unstable potential, and w=0 represents a
flat potential. This specific choice facilitates explicit calcula-
tion, but the results are qualitatively similar if one chooses
another form of this potential. Thus, in our model, we will
consider the external potential as

U(x) = — x| + VoB(x), (5)

where B(x)=[(&(x")dx" is the trajectory of a Brownian mo-
tion in space (see Fig. 2). Note that the case u=0 corre-
sponds to the pure Sinai model. Figure 2 shows typical real-
ization of potentials for u=0, w>0, and w<0. The
corresponding force in Eq. (3) is simply given by

F(x) = wsgn(x) + Voé(x). 6)

We will demonstrate how to calculate explicitly, using our
generalized Feynman-Kac formalism, the disorder-averaged
PDF P(T|t,x,) when the external potential is of the form
given by Eq. (5). Despite the simplicity of the choice of the
external potential, a variety of rich and interesting behaviors
can be obtained by tuning the parameter u/o, as shown in
this paper. We will present detailed results for the two func-
tionals: namely, for the local time and the occupation time
corresponding to the choices V(x)=48(x) and V(x)=6(x), re-
spectively, in Eq. (2). Also, to keep the discussion simple, we
will present our final results for xo=0 corresponding to the
particle starting at the origin. However, our method is not
limited only to this specific choice. Some of these results
were briefly announced in a previous Letter [43].

In addition, in this paper we also introduce the notion of
“inverse functional,” which is defined as follows. If V(x) in
Eq. (2) is non-negative, then for each path {x(7)}, T is a
nondecreasing function of #, which we formally denote by
T=g(t|{x(7)},x,). Therefore for a given realization of path
{x(7)} and given T there is a unique value of ¢ (see Fig. 1),
which we formally write as the inverse of the functional g,1

t=g ' (THx(D}xo). (7

This inverse time ¢ physically means the observation time
that is required for any given path {x(7)} in order to produce

lStrictly speaking this inverse does not exist always over a dense
set of points. The inverse functional is properly defined in Ref. [46],
p. 113, in the context of local time.

051102-2



STATISTICAL PROPERTIES OF FUNCTIONALS OF...

U(x)

W -
(a)

~e

(b)

p <0

(© 0 -

FIG. 2. A classical particle (represented by ¢) diffusing in a

typical realization of the potential U(x)=—mu|x|+oB(x), where

B(x) represents the trajectory of a Brownian motion in space with

B(0)=0. The three figures are for u=0, u>0, and u<0, respec-
tively. The dashed lines show the potential for o=0.

a prescribed value of 7. Of course, for the same value 7, for
a different path {x(7)}, the value of ¢ will be different. Thus,
t is a random variable for a fixed 7, which takes different
values for different realizations of paths and we would like to
compute its PDF, which we denote by 1(¢|T,x,) and by defi-
nition [1(¢t|T,0)dt=1. Clearly, this PDF will also differ
from sample to sample of the external potential in Eq. (5)
and our goal is to obtain the disorder-averaged distribution
I(t|T,xp). In this paper, we present detailed results for
I(¢|T,0) again for the two choices of V(x)=48(x) and
V(x)=6(x) corresponding to the local time and the occupa-
tion time, respectively. The inverse local and occupation
times are useful for experimentalists as they provide an esti-
mate of the required measurement time. For example, in the
context of polymers, the inverse local time is the typical
length of a polymer required to obtain a certain monomer
concentration.

The rest of the paper is organized as follows. In Sec. II,
we present our general approach for computing the PDF
P(T|t,x) of the functional T defined by Eq. (2) for a given ¢
and the PDF I(¢| T, x) of the inverse functional defined by Eq.
(7) for a given T, for a given sample of the random potential,
for arbitrary starting position of the particle x(0)=x and for
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arbitrary but non-negative V(x). After this section we con-
sider specific examples of local time and occupation time by
setting V(x)=4(x) and V(x)=6(x), respectively. We will use
different notations for the PDF’s in the two examples to
avoid any misunderstanding. In the first example, where T is
the local time, we denote the PDF of the local time P(T|t,0)
for a given ¢ by P,,.(T|?) and the PDF of the inverse local
time I(¢|T,0) for a given T by I,,.(t|T). In the second ex-
ample, where T is the occupation time we denote the PDF of
the occupation time P(T|¢,0) for a given ¢ by P ..(T|f) and
the PDF of the inverse occupation time I(¢|T,0) for a given
T by I,..(t| T). While our final goal is to obtain the disorder-
averaged distributions P (T|t), Lioc(t|T), Pooo(T|?), and
I,..(t| T), it is, however, instructive to study the pure case
first before tackling the problem with disorder which is ob-
viously harder. In the same spirit, we have presented detailed
discussions of the local time, inverse local time, occupation
time, and inverse occupation time for the pure case (o=0) in
Secs. 11, V, VII, and IX, respectively, before computing their
disorder average in Secs. IV, VI, VIII, and X, respectively.
Section XI ontains some concluding remarks. Some of the
details are relegated to the Appendixes. The results are sum-
marized in Tables I-III.

II. GENERAL APPROACH

In this section we will show how to compute the PDF’s
P(T|t,x) and I(t|T,x) for arbitrary non-negative V(x) and
arbitrary starting position x(0)=x, for each realization of ran-
dom force F(x), by using a backward Fokker-Planck equa-
tion approach. In the following discussion we will denote the
functional defined in Eq. (2) by g(¢|{x(7)},x), and use T as
the value of the functional for a given path [{x(7)}, for
0sr<t].

Since V(x) is considered to be non-negative, T defined by
Eq. (2) has only positive support. Therefore, a natural step is
to introduce the Laplace transform of the PDF P(T|z,x) with
respect to T

1,x)ePTdT = (¢ PsHx(7} ’X)>x(0)=x

Qp(x,t)=f P(T
0

= <exp{—pf V[x(t’)]dt'}> R (8)
0 x(0)=x

where (- -*),(0)=, denotes the average over all paths that start
at the position x(0)=x and propagate up to time 7. Our aim is
to derive a backward Fokker-Planck equation for Q,,(x, 1)
with respect to the initial position x(0)=x.

We consider a particle starting from the initial position x
and evolving via Eq. (3) up to time ¢+ A¢. Then from Eq. (8),
it follows that

t+At
Q,(x,t+ A1) = <exp{—pf Vix(t")]dt' }> . (9)
0 x(0)=x

Now we split the time interval [0,7+A¢] into two parts: an
infinitesimal interval [0, Az], over which the particle experi-
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TABLE 1. Flat potential. Disorder-averaged PDF’s of the local, inverse local, occupation, and inverse
occupation times of a particle starting at the origin, diffusing in the Sinai potential U(x)=VoB(x), where B(x)
represents the trajectory of a Brownian motion in space with the initial condition B(0)=0.

Pure case (o=0)

Disordered case (o>0)

2 72
Ploc(T‘t)= — exp[__}
Nt 2t

Lot )= —— r
= exp| —
foe o P 2

PoceT|1)=————,

OCC( |) ﬂ\,’m

0<T<t

— T

Loee(t] T)=——=0(1-T)
atNt—=T

t—00,T— 1
Ploc(T|t) ? ¢1n2 lf](T/t)
T/t fixed n

2
fi (y)=;€_yhTKo(y/0')

t—00, T— 1
Iloc(t| T) —> mgl(l/T)
/T fixed

2
gl(x)=;€_1/mKo(1 [ ox)

PoceT|0)=R(T|1)+ R (1-T|1)

—%

R (T|t) — ER(T)

\60‘
R(T) = ——, for small T
NaT

1
R(T)~ o7 for large T

T—oe
Iocc(t|T) - 13(t_T)
InT
>T

2
I(7) = %, for small 7
T

1
I3(7) ~—, for large 7
27

ences an infinitesimal displacement Ax from its initial posi-
tion x, and the remaining interval [A¢,7+Af], in which the
particle evolves from a starting position x+Ax (see Fig. 3).
Since x(0)=x, from the first time interval [0,Af] one gets
f é’ V[x(t")]dt' = V(x) At+ O[(At)?]. For the remaining interval
[Ar,1+At] the average (- )y)=, in Eq. (9) is now taken as
follows: For a fixed Ax, the average is taken over all paths
that start at position x(A7)=x+Ax and propagate up to time
t+At, which gives Q,(x+Ax,?). Of course Ax is a random
variable, since At is fixed. So now the average must be taken
over all possible displacements Ax that can occur in At
length of time. Therefore, from Eq. (9), we can now write
down the evolution equation for Q,,(x,t) as

Q,(x,1+ A1) = e’pv(x)At(Qp(x + AX, 1)) axs (10)

where (- --),, denotes the average with respect to all possible
displacements Ax. Now assuming small Ax, using Taylor ex-
pansion one gets

(0)x + Ae.t))a = Oy (.t) + <Ax>%

+%((Ax)2>a;—xQ2’3+ SRR (11)

In the limit A7— 0, integrating Eq. (3) one gets

At
Ax=F(x)At + f p(Ddr+ O[(Ar)?]. (12)

0

Using the zero mean and the uncorrelated properties of the
noise we get

. {(Ax) . {(Ax)?)
i VR v S VR

Therefore, using Eq. (11) and e ?YWA=1—pV(x)Ar+-+- in

051102-4



STATISTICAL PROPERTIES OF FUNCTIONALS OF...

PHYSICAL REVIEW E 73, 051102 (2006)

TABLE II. Unstable potential. Disorder-averaged PDF’s of the local, inverse local, occupation, and inverse occupation times of a particle
starting at the origin, diffusing in the unstable random potential U(x)=—pu|x|+\oB(x), where >0 and B(x) represents the trajectory of a
Brownian motion in space with the initial condition B(0)=0. We denote v=pu/o.

Pure case (o=0)

Disordered case (o>0)

t—®

Ploc(T|t) - Ploc(T)y
P =2

(T+p)?
21

Iloc(t| T)=

exp|—
A

+(1—exp[-2uT]) &(1—)

Pocc(Tl t) =RL(T| t) +RL(t_ T‘ t)

t—®

R(T|1) — R(T)

2
Ru(T)= M\Zexp[ K T]

2
1 3 9u? 3u —
——- £ exp 2 Tlexte| 2E T
Va2 2 2

E
R/ (T)= 'Lf;—, for small T
T

\5 o 2772
R;(T)=—=—%7, for 1 T
(T) 9#v,77 = or large
T—>® 1
Iocc(tlT) - Il(l‘—T)+§§(l‘—°O)

t>T

2
I](T)=,u,\5 expl:—%-]

» 1 3u 9u? . 3u -
——-—-—=eX —Terc T
N V2 P 2 VZ\

h
Il(T)z'L%%, for small 7
VT

\5 e—ﬂz 712

L(n)=—"

9M\S7T—73/2 , for large 7

—_—
[ M—

t—x

Ploc(T|t) ’ PIOC(T)’

Ploc(T) =2/'L(1 + UT)_(2V+1)

t—0,T—ow

Iloc(t| T ——o WgZ(t/T)
t/T fixed

+(1-[1+0T]?")8(1—)

2 \,7_7. e—2/ ox

g2(x)=[02u—1rz(v) (o)2*]

Pocc(T| t)=RL(T|t)+RL([_T| [)

U(1/2,1+v,2/0x)

t—0

Ry(T|t) —— R.(T)

_ )
R (T)= 'L{“L—, for small T
T

R.(T)~ ™7, for large T

b is given by the zero of
K,,(v“?p/o’) closest to origin in the
left part of the complex-p plane.

T—x 1
Iocc(t|T) ’ 14(t_T)+55([_°O)
t>T

f

h
INGE 'U,“L—, for small 7
NTT

I,(7)~e™"7, for large 7
b is the same constant as above.

Eq. (10), then dividing both sides by Az, and taking the limit
Fokker-Planck

Ar—0, one arrives at the “backward”
equation

16°Q

Do T8 s F0 2 - pVi00,,

a2 o’

with the initial condition Q,(x,0)=1, which is easily
checked by Eq. (8). The advantage of the above equation
over the usual Feynman-Kac formalism [1,2] is that, in the
latter case one has a “forward” Fokker-Planck equation (spa-
tial derivative with respect to the final position), where after
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TABLE 1II. Stable potential. Disorder-averaged PDF’s of the local, inverse local, occupation, and inverse
occupation times of a particle starting at the origin, diffusing in the stable random potential U(x)=— x|
+VoB(x), where u<<0 and B(x) represents the trajectory of a Brownian motion in space with the initial

condition B(0)=0. We denote v=|u|/o.

Pure case (0=0)

Disordered case (o>0)

Pyoo(T d )|y
1)~ =P, .
e ‘ )=exp t T/t fixed

1
®(r)= E(r— |u))?, near r=|u

T (T—|ulr)?
=——=exp|—
loc \“527”3 P 2

p T @ T t—oo, T—®©
1) ~ exp|—1®| —
o710 ~exp =P\ 71 e

a()=2lr-2] near r=1
r)= M r 2 , near r—2
Loo(t| D) =0(t=T,T)0(t-T)

large T MZ( T— T)2

2T

T
I(7,7) |M|

ex
27T P

t—o, T—o©

—_— 1
Ploc(T|t) E— _fz(T/t)

T/t fixed
2\; y 2v-1
LO=|—5—|=| e>°u/2,1+v,2y/0)
I(v) \o ,
t—00,T—00 1
Iloc(tlT) E— _g3(t/T)
/T fixed
20.\,77 e—Z/Ux
g3(X)=[r2—(V) WU(1/2, 1+v,2/0x)
t—00,T—00 1
Pocc(Tlt) E— _fo(T/t)
T/t fixed
= 1-y)] 1 0=<y<l1
fo») Br) y(1-y)] y
t—00,T—0o0
Iocc([| T) —— _gO(t/T)
t/T fixed
1 (=" |
= —_— x>
go(x) B(V, V) e X

obtaining the solution of the differential equation, one has to
again perform an additional step of integration over the final
position. In contrast, Eq. (14) involves the spatial derivatives
with respect to the initial position of the particle, and hence
no additional step of integration over the final position is
required.

The standard practice of attacking the partial differential
equations of above type is by using the method of Laplace
transformation. We define the Laplace transform of Qp(x,t)
with respect to f:

1,x),

u(x) = f Q,(x1)e”"dt = f die™ f dTe"P(T]
0 0 0
(15)

where for notational convenience, we have suppressed the «
and p dependence of u(x). Now by taking Laplace transform
of Eq. (14) with respect to ¢ we obtain the ordinary differen-
tial equation

%u"(x) +F(x)u'(x) - [a+pV(x)]u(x)=-1, (16)

where u'(x)=du/dx. The appropriate boundary conditions
u(x— +) are to be derived from the observation that if the
particle starts at x — *o0 it will never cross the origin in finite
time. Note that Eq. (16) is valid for each sample of the

quenched random force F(x). Thus, in principle, from the
solution u(x) one obtains P(T|z,x) by inverting the double
Laplace transform in Eq. (15) for each sample of quenched
random potential and then takes the average over the
disorder.

Our next goal in this section is to show how to compute
the PDF I(¢| T, x) for a given sample of the quenched random
force F(x). It turns out that /(¢|T,x) is related to the PDF
P(T|t,x) in their Laplace space as shown below. By defini-
tion we have

1(z

T.x) = (8t = g~ (THx(D}x))), (17)

However, it is elementary that for each realization of path

{x(7)}

81— g (T{x()},x)) = 8T - g (1l {x(7)},x)) ‘ i,—f‘ . (18)

where |dT/dt| is the usual Jacobian of the transformation,
which is simply d7/dt as both T and ¢ have only positive
support. It immediately follows from the above two equa-
tions that
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FIG. 3. (Color online) Schematic plot showing two realizations
of positions of a particle starting from the initial position x(0)=x
evolve to a position x+Ax in time Az and then starting from the
position x+Ax evolve up to time ¢+ At (color online).

I(¢

dr
T.x)= <5(T— g(t|{X(T)},x))E> : (19)
Therefore, Laplace transform of I(t|T,x) with respect to T
reads

” d 149
f dTe P I(#|T,x) = <e"’g(’|{x(7)}’x)—g> =-——0,(x.1),
0 dat/, pot

(20)

where Q,(x,7) is given by Eq. (8). Now taking a further
Laplace transform in Eq. (20) with respect to ¢, it is straight-
forward to obtain

fdte’“’f dTe PTI(¢
0 0

Thus, we have established, via Egs. (20) and (21), the rela-
tionships between the Laplace transforms of the PDF of the
functional T defined by Eq. (2) and the PDF of the inverse
functional defined by Eq. (7). Hence, again in principle, from
the solution u(x) of the ordinary differential equation (16),
one obtains I(t|T,x) by inverting the double Laplace trans-
form in Eq. (21) for each sample of quenched random poten-
tial, and then takes the average over the disorder. Note that
putting @=0 in Eq. (21) and inverting the Laplace transform
with respect to p immediately verifies the normalization con-
dition [1(¢|T,x)dt=1.

In the rest of the paper, we will demonstrate how to
implement this formalism for the particular examples of the
local time corresponding to the choice V(x)=48(x) and the
occupation time corresponding to the choice V(x)=6(x).
Since in these examples we consider the starting position of
the particle to be the origin, we need to only find the solution
u(0) of the differential equation (16). In each example, we
will consider the pure cases (o=0) first, which help us an-
ticipate the general features of the results in the disordered
case (0>0) studied later.

T = 1- au(x).

(21)

III. LOCAL TIME WITHOUT DISORDER (o=0)

In this case V(x)=48(x) corresponds to T in Eq. (2) being
the local time in the vicinity of the origin and P(T|z,0) in
Eq. (15) being P,,.(T|f)—the PDF of the local time T for a
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given observation time window of size ¢ and the starting
position of the particle x(0)=0. For our purpose we only
need the solution u(0) of the differential equation (16),
which corresponds to the starting position of the particle be-
ing the origin. However, to obtain #(0) we have to solve Eq.
(16) in the entire region of x with the boundary conditions
u(x— +) which are derived from the following observa-
tion. If the initial position x — +%, the particle cannot reach
the origin in finite time, which means that the local time
T=0. Therefore, by substituting P(T|f,x— x£©)— &T) in
Eq. (15) one obtains the boundary conditions

1
u(x — xo0)=—, (22)
o
We have to obtain the solutions u(x)=u,(x) for x>0 and
u(x)=u_(x) for x<0 by solving Eq. (16) separately in the
respective two regions,

%ul(x) + F(o)ul(x) — au(x)=-1, (23)

with the boundary conditions u,(x—%)=1/a and
u_(x——)=1/a, and then matching the two solutions u,(x)
and u_(x) at x=0. The matching conditions are
u,(0) =u_(0) =u(0), u;(0)-u’(0)=2pu(0). (24)

The first condition follows from the fact that the solution
must be continuous at x=0, and the second one is derived by
integrating Eq. (16) across x=0.

By making a constant shift u,(x)=1/a+A,y.(x), from Eq.
(23) one finds that y_(x) satisfy the p-independent homoge-
neous equation

1 n ’
2720 + F(x)y;(x) - ay.(x) =0, (25)
with the boundary conditions y,(x—)—0 and

y_(x——2)—0. The constants A, are determined by the
matching conditions given in Eq. (24), which can be rewrit-
ten as

1
Ay.(0)=A_y_(0) =u(0) - ;’ (26a)
A,y (0) = A_y’(0) = 2pu(0). (26b)
Eliminating the constants A, from Eq. (26), we

obtain the Laplace transform u(0), defined by Eq. (15) with
P(T|t,0)=P,(T|t), as

AMa)
alp+Ma)]’
27

u(0) =f dte'“’f dTe TP, (T]t) =
0 0

where \(a) is simply given by
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z_(0) = z,(0) with 2,(x) = y+(X). (28)

2 y=(x)

Note that putting p=0 in Eq. (27) and then inverting the
Laplace transform with respect to « readily verifies the nor-
malization condition

Ma) =

f ’ P (T|)dT = 1. (29)
0

Since N(«) is independent of p, inverting the Laplace trans-
form in Eq. (27) with respect to p yields

Gla) = f °° dte™ ' Pyoc(T11) = & exp[- Ma)T], (30)
0

which is valid for any arbitrary force F(x). In the following
subsections we will consider qualitatively different types of
deterministic potentials to derive more explicit results.

A. Flat potential

We first consider the simple Brownian motion without
any external force, F(x)=0. In this case the solutions of Eq.
(25) are obtained as

¥:(x) =y, (0)exp[ F x\2a]. (31)

Using the solutions in Eq. (28) one gets )\(a)z\r’% and
hence the Laplace transform G(a) in Eq. (30) becomes

E
Gla)= f dte™™ P, (T|t) = ¢ V2aT, (32)
a

Now inverting the Laplace transform with respect to «, one
finds that the distribution of the local time is Gaussian for all
T and 1,

V2 72
- Eud T

B. Unstable potential

Now we consider the case of a Brownian particle moving
in an unstable potential U(x) such that U(x— +00) — —o0,
The corresponding repulsive force F(x) drives the particle
eventually either to +% or to —%. The PDF of the local time,
Poo(T|t), in the case of an unstable potential tends to a
steady distribution P,..(T) as r— o0, which can be computed
explicitly. To see this consider the function G(«) in Eq. (30).
By making a change of variable 7=at, it follows from Eq.

(30) that
Gla) =+ J : drPloc(T|I). (34)
aly a

Assuming P, (T|t—%)=P,,.(T), we find from the above
equation that G(a) — P,.(T)/ @ as a«— 0. Comparing this be-
havior with Eq. (30) gives

PHYSICAL REVIEW E 73, 051102 (2006)

P1oc(T) = M0)exp[- M0)T], (35)

provided A\(0) is a finite positive number. Thus generically,
for all repulsive force F(x), the local time distribution has a
universal Poisson distribution in the limit #—oc. The only
dependence on the precise form of the force F(x) is through
the rate constant \(0).

The rate constant \(0) can be expressed in terms of the
force F(x) in a more explicit manner. Putting a=0 in Eq.
(25) and solving the resulting equation with the boundary
conditions y,(x— %) —0 and y_(x——%) —0 we get

J P (y)dy
V() =y,(0)0———, x>0, (36)

J #(y)dy

f x ¥ (y)dy

flﬁz)dy

where (y)=exp[—[3F(x)dx]. Substituting these results into
Eq. (28) gives the rate constant as

A(0) = ! L ey

j P (y)dy f ¥ (y)dy

y- )=y (0)——, x<0, (37)

Let us now consider a simple example where the
potential U(x)=—pu|x| with w>0, corresponding to the
repulsive force F(x)=u sgn(x) from the origin. In this
case y(y)=exp[-u|y|] and hence from Eq. (38) we get
ANO0)=2pu.

C. Stable potential

We now turn our attention to the complementary situation
when the potential U(x) is stable—i.e., U(x— £%)—o, In
this case the force F(x) is attractive towards the origin so that
the system eventually reaches a well-defined stationary state.
The stationary probability distribution p(x) for the position
of the particle is given by the Gibbs measure

e—ZU(x)

Z

px) = , (39)

where U(x)=—[(F(x")dx" and Z is the partition function,

z- |

In this case the Laplace transform G(a) of the PDF of the
local time P,.(T|?) is still given by Eq. (30). However, un-
like the unstable potential in the previous section, the distri-
bution P,.(T'|f) does not approach a steady state as t— .
Instead it has a rather different asymptotic behavior.

To deduce this asymptotic behavior, let us first
consider the average local time (T)=[((Sx(z')])dt’. For

e 2V gx. (40)
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large ¢, the average (8 x(¢')]) approaches its stationary value
(dx(¢")])— p(0), where p(0)=1/Z from Eq. (39). Hence as
t— the ratio 7/t approaches the limit

n 1

¢z (“1)
where Z is given by Eq. (40). Thus, for large 7, the average
local time scales linearly with time ¢, which indicates that the
natural scaling limit in this case is when t—o0,7— but
keeping the ratio r=T/t fixed. We will see that in this scaling
limit the local time distribution P,,.(T|) tends to the follow-
ing asymptotic form:

P (T|t) ~ exp[— t@(%)] , (42)

where ®(r) is a large deviation function.

To compute the large deviation function we first
substitute this presumed asymptotic form of P (7T|?)
given by Eq. (42) in the Laplace transform
G(a)=[ye ™ P\,(T|t)dt and then make a change of variable
r=T/t in the integration. The resulting integral can be evalu-
ated in the large-T limit by the method of steepest descent,
which gives G(a)~exp[-TW(a)] where W(a)=min[{a
+®(r)}/r]. Comparing this result with Eq. (30) gives

) { a+ D(r)
min,| ———

r

:| =\ a), (43)

where \(a) is given by Eq. (28). Thus \(«) is just the Leg-
endre transform of ®(r). Inversion of this transform gives
the exact large deviation function

®(r) =max,[— a+r\(a)], (44)

with () given by Eq. (28). This is a general result valid for
any confining potential U(x).

We will now explicitly compute the large deviation ®(r)
for the particular potential given by Eq. (5) with <0 and
o=0. Substituting the corresponding force F(x)=—|u|sgn(x)
in Eq. (25) and solving the resulting differential equations

with  the boundary conditions y,(x—0%)—0 and
y_(x—=2)—0 we get
_ 2 A
v=(0) =y (0)exp[ T (= [u| + Vi +2a)x].  (45)

Substituting these results in Eq. (28) we get N(a)=—|u|
+Vu2+2a. From Eq. (44) one then gets the large deviation
function

@) = 3| (46)

It turns out that for this particular form of the force
F(x)=—|u|sgn(x), the Laplace transform in Eq. (30) can be
inverted to get the local time distribution P .(T|7) exactly
for all T'and ¢. The calculations are presented in Appendix A.
We find that in the large-¢ limit, the distribution reduces to
the asymptotic form
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PrTi) = — { t(T | |ﬂ (47)
loc \/2_’77'1‘ exp 2\ ¢ M ’

near the mean (T)=|u|t, which verifies the result obtained

above by the large deviation function calculation.

In fact, the limiting Gaussian form of the distribution
of the local time near its mean value is quite generic for
any stable potentials (where the system eventually becomes
ergodic) and is just the manifestation of the central limit
theorem. From the definition, 7T—(T)=[({dx(¢")]
—{(8[x(t")]}dt’, it follows that when T—(T), the random
variables dx(¢')]—{(x(z')]) at different times ¢’ become
only weakly correlated. Then, in the limit when ¢ is much
larger than the correlation time between these variables, one
expects the central limit theorem to hold which predicts a
Gaussian form for T near its mean value (7).

IV. LOCAL TIME WITH DISORDER (o>0)

So far we have considered the case where the random part
of the potential was not present. In this section we will study
the effect of the randomness by adding a random part to the
potential. In particular, we will consider the diffusive motion
of the particle when the force F(x) is given by Eq. (6) with
a>0.

Equation (30) still remains valid for each realization of
the force F(x)—i.e., for each realization of {&(x)}. Our aim is
to compute the average of the PDF of the local time P,.(T|7)
over the noise history {&(x)}. From Eq. (30), one needs to
know the distribution of A(a)=[z_(0)-z,(0)]/2, which is
now a random variable since F(x) is random. The variables
—z,(0) and z_(0) are independent of each other, and therefore
their joint probability distribution factorizes to the individual
distributions. The calculations of these distributions are pre-
sented in Appendix B. Using the distributions of z,(0) from
Egs. (B9) and (B11), respectively, with a,=a, one gets

— 2
exp[—- Ma)T] = {%} i (48)
with
i 1 2a
a(h) = f wh'o! CXP{_ _{W(l +0T) + —}}dw
0 20 W
(49)
:Q(Za),u/Z(r(l + O.T)—,u/2(rK , <@>,
(50)

where K,(x) is the modified Bessel function of order v [44]
and K_,(x)=K(x). Averaging Eq. (30) over disorder we fi-
nally get the exact formula

“ —_— 1 d
L dte_mploc(ﬂt) == Md_T[qZ(T)] (51)

However, it is not an easy task to invert the Laplace trans-
form to get the exact distribution P,.(7'|#) for all T and ¢. In
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the following subsections we will extract the asymptotic be-
haviors of P,..(T|1), for the three cases, when the determin-
istic part of the potential is (i) flat corresponding to =0, (ii)
unstable corresponding to u >0, and (iii) stable correspond-
ing to u<<0.

A. Flat potential («=0): Sinai model

We first consider a particle diffusing in the continuous
Sinai potential—i.e., u=0 in Eq. (5). Our aim is to find out
how this random potential modifies the behavior of the local
time. In this case substituting ¢(7) and ¢(0) from Eq. (50)
with w=0 in Eq. (51) we get the Laplace transform of the
disorder-averaged local time distribution as

* — 1 d V2a(1 + oT)
die™P,..(T|t) = - —K2( )
J() loc | aKé(\'%/O') T 0 o
(52)

We will now consider the interesting limit where both # and T
are large, but the ratio y=T7/t¢ is kept fixed. This corresponds
to taking the limit «— 0 with aT=s keeping fixed. In this
limit,

\/% 1
K()(_) —>——]na/ (53)
o 2
and
~ . ~
Ra(l+oT 2
KO<—\ ol+o )> _>KO(¥>. (54)
g Vo

Therefore, substituting r=s/ay and T=s/« in Eq. (52), in the
limit «— 0 we get

fxd _s/y|: S p (s| s )] 4 &Kz \V2s
e — Pl —I— || =- —K|l —|.
0 Y ay? loe\ o ay In2ads ° V/;

(55)

The above equation suggests that, in the limit t— and
T— oo, while their ratio T/t is kept fixed, Py,.(T|f) should
have the scaling form

_— 1
Ploc(T|t) = mfl(T/t)~ (56)
Now substituting the above form in Eq. (55) and making

the change of variable y=1/y, we obtain, after straightfor-
ward simplification,

® e
J dy*e-sf['—f L (~12/§) } = 4K§< ”,—2_S> ) (57)
0 y o

Note that the right-hand side of the above equation is simply
the Laplace transform of the function f,(1/%)/5>. Therefore
by using the identity

o e—a2/4w -
f e*°dw=2Ky(aVs) (58)

0 w

and the convolution property of Laplace transform, we can
invert the Laplace transform in Eq. (57) with respect to s.
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ofiy)

FIG. 4. The scaling function f;(y) in Eq. (56). The solid line is
plotted by using Eq. (62), and the dashed line is plotted by using the
limiting form f(y) ~ \2moy™32e /7 as y — oo

Inverting the Laplace transform and after simplification we
finally get

172

1
0 x(l_x)exp{-zm(l_x)]. (59

Therefore the scaling function f,(y) is simply given by

_%f”z dx {#} "
fl(y)_y o x(1-x) xp _20'x(l—x) ’ (60)

By substituting x(1-x)=1/z gives

A = %f S p(— lz), (61)

] €X
yJa Nz(z-4) 20

fl(l/f)=2ij

where the integral can be evaluated exactly [44], which fi-
nally gives the scaling function in Eq. (56) as

2
fiy) = ;e_y/(rKo(y/O')- (62)

However, the scaling given by Eq. (56) breaks down for very
small y (very small 7) when y<o. The scaling function is
displayed in Fig. 4. In the large-y limit, using the asymptotic
the behavior K, (x)~/2xe™ from Eq. (62) we find that
[0~ \2may e

B. Unstable potential (x> 0)

In this case the behavior in the limit r— % can be obtained
by either setting =0 in the integral in Eq. (49) or taking the
a—0 limit in K,(-) in Eq. (50), which gives
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(1) — T(wl0)(20)*7(1 + oT) 7, (63)

where I'(x) is the gamma function [45]. Substituting g(7)
and ¢(0) in Eq. (51) and inverting the Laplace transform with
respect to a gives

Pioc(Tl1) = 2 (1 + 0T) 24771, (64)

i.e., in the limit — o0, the distribution P, ,.(T|?) tends to a
steady-state distribution P,..(T) for all T=0. The disorder-
averaged local time distribution has a broad power-law dis-
tribution even though for each sample the local time has a
narrow exponential distribution [see Eq. (35) in Sec. Il B].
This indicates wide sample-to-sample fluctuations and lack
of self-averaging.

C. Stable potential (u<0)

In this case substituting ¢(7) and ¢(0) from Eq. (50) in
Eq. (51) and denoting v=|u|/o we get

dte P, (T|t) == ———F——
fo oc( 7] aK%(\J%/a')

/ a 2
xi|:(1+UT)V/2KV<M):| .
aT o
(65)

We consider the scaling limit where both 7 and T are large,
but their ratio y=T7/t is kept fixed. This corresponds to taking
the limit a«— 0 with keeping aT=s fixed, which gives the
following limiting forms:

(1+0T)—>U—S, (66)
o
r,_ /_ v
’2 12
&(—‘ “) S (—‘T,\— ) , (67)
o 2 Va

!/_

51+ T e
K,,( V2a(l + UT)) . KV( \2s> (68)

[oa

Substituting the above limits on the right-hand side of Eq.
(65) and making a change of variables t=s/ay and T=s/«a
on the left-hand side, it is straightforward to get

f d —s/yl ol P (i|i>i|
ye > 10c
0 ay a ay

4 J 2 \J’Z 2
="k | = |, 69
(20)T2(») as{s ( \Gﬂ (69)

in the limit «—0. This suggests the limiting form for
PIOC(T|t)’

_ 1
PlOC(T|t) - ;fz(T/t)’ (70)

in the scaling limit t—o and T—% with a fixed ratio
y=T/t. To compute the scaling function we substitute the
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above scaling form in Eq. (69) and make the change of vari-
able y=1/y. Then Eq. (69) simplifies to the Laplace trans-
form

Gl ham |4 " (g) 2
fo e y[ 7 }‘(2a)vr2(v)ls AR

(71)

which can be inverted with respect to s, by using the identity

o a ve—a2/4w -
f ) o e dw=2s"?K (a\s) (72)
0

and the convolution property of the Laplace transform. After
simplification, the inverse Laplace transform gives

~ 2y21/—1 172 dx
fz()’) - (ZG_)ZVIQ(V) 0 xv+1(1 _x)v+1
Y
Xexp[— —20'x(1 —x)]. (73)

By making a change of variable x(1—x)=1/z in the above
integral, it can be presented in the form

2y2V—1 o0

v=112( _ 4\-112
Cor ), Y

fz(y) =

Xexp(— lz)dz, (74)
20

which now can be expressed in more elegant form [45] as

_

24 2v-1

fz(y)=[ - }<X> U121 + v,2y10),
ol*(v) |\ o

(75)

where U(a,b,x) is the confluent hypergeometric function of
the second kind (also known as Kummer’s function of the
second kind) [45], which has the following limiting
behaviors:

r
U(1/2,1 + v,x) = gx_” for small x, (76a)
N
1
U(1/2,1+v,x) ~ —= for large x. (76b)

VX

The scaling function f,(y) is displayed in Fig. 5. Using
the limiting behaviors from Eq. (76), one finds that the scal-
ing function decays as f,(y) ~y“*32¢=2"7 for large y. For
small y, the scaling function behaves as f,(y) ~y*~!, which
increases with y for »>1, but which, however, diverges
when y— 0 for »<<1, a behavior qualitatively similar to the
Sinai case (see Fig. 4). For v<<1, the disorder wins over the
strength of the stable potential. In that situation when the
particle gets trapped in the wells of the random potential, the
weak external deterministic force often cannot lift it out of
the well and send toward the origin. Therefore, the scaling
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o foly)

y/o

FIG. 5. The scaling function f>(y) in Eq. (70), plotted by using
Eq. (75). v=|ul/o.

function f,(y) carries very large weight near y=0 (which
corresponds to very small local time 7 for a given observa-
tion time 7).

Note that, for the particular value v=1/2, the scaling
function has a simple form f,(y)=v2/moy exp(-2y/ o).

V. INVERSE LOCAL TIME WITHOUT DISORDER
(0=0)

The inverse local time means how long one has to observe
the particle until the total time spent in the infinitesimal
neighborhood of the origin is 7. The double Laplace trans-
form of the PDF of the inverse local time is obtained by
simply putting x=0 in Eq. (21). The corresponding u(0) in
Eq. (21), which is nothing but the double Laplace transform
of the PDF of local time, has already been evaluated in Sec.
IIT and is given by Eq. (27). Substituting «(0) and replacing
I(¢|T,0) with the PDF of the inverse local time I,,.(¢|7),
after straightforward simplification, for x=0, Eq. (21) reads

f dte'mf dTe ™1, (1|T) = ———, (77)
0 0 p+\a)

where \(«) is given by Eq. (28), which depends on the force
F(x) through Eq. (25). Inverting the Laplace transform with
respect to p gives the general formula

J °° dte™ o (1| T) = exp[- M) T], (78)
0

valid for arbitrary force F(x), a result known in the math-
ematics literature [17,46].

We first consider the pure case where the force given by
Eq. (6) with o=0. Substituting solutions of Eq. (25) for
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Q STABLE POTENTIAL (x < 0)
-
3
~ 0.2
L
AT POTENTIAL (= 0)
052

t/T

FIG. 6. (Color online) The PDF’s of the inverse local time for
stable (u=-1/2), flat (u=0), and unstable (u=1/2) potentials,
plotted using Eq. (80) and T=2.

F(x)=usgn(x) in Eq. (28) we obtain \(a)=u+\u’+2a.
Now using this A(«@) in Eq. (78) and making a change of the
parameter a=3-u*/2 we get

f dreP e Pl (1] T)] = e T 2T, (79)
0

where the right-hand side is simply the Laplace transform of

2 .
e# 2, (t| T) with respect to . The Laplace transform can be
inverted to obtain the exact PDF of the inverse local time,

T (T + ut)?
Lo (t|T) = ——=exp| - ——— |, 80
e T) o P[ 2 (80)
with the normalization condition
* 1 for u<0
Lo (t|T)dt = e~ #HHDT = T (81
J;) loc( | ) e e—Z,MT for P >0, ( )

which is simply obtained by putting @=0 in Eq. (78). As we
infer from Eq. (80), although in the limit z— 0 the inverse
local time distribution I,,.(¢| T) ~ exp(—=T2/2t) is independent
of w, for large ¢ it depends on the nature of the potential, as
shown in Fig. 6. While in the absence of any force—i.e.,
m=0—the inverse local time distribution has a power-law
tail I,,.(t|T)~1 32, for the stable potential—i.e., u<0; it
decays exponentially 1,,.(t|T) ~exp(—u?t/2). On the other
hand, when the potential is unstable, x>0, as we see from
Eq. (81), the distribution I,,.(| 7) is not normalized to unity.
In this case the particle escapes to o with probability
(1—-e72#T) and Eq. (80) gives the distribution only for those
events where the particle does not escape to +%. Therefore,
for >0, it is appropriate to represent the full normalized
distribution as
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Iloc(t|T) =

{ (T + )
exp| - ———

2 } + (1 —e2# ) §(t — ).

)

\ 3

t
(82)

Note that the second term does not show up in the Laplace
transform of I,,.(¢| T) with respect to ¢.

VI. INVERSE LOCAL TIME WITH DISORDER (o> 0)

In this section, we switch on the disorder by considering
>0 in the force given by Eq. (6). In the presence of disor-
der, taking the disorder average of Eq. (78) gives

f dte™ 1, (t|T) = exp[- M) T], (83)
0
with N(a@)=[z_(0)-z,(0)]/2, where —z,(0) and z_(0) are in-
dependent random variables, whose distributions are given
by Egs. (B9) and (B11), respectively, with a,=a. The object
exp[—A(a)T] on the right-hand side of Eq. (83) has already
been evaluated in Sec. IV, which is given by Eq. (48). In the
following subsections we will determine the behavior of
I1oo(¢| T) in the scaling limit r— o, T— o, while keeping their
ratio x=¢/T fixed, for the three qualitatively different cases:
(i) ©=0, (i) ©>0, and (iii) ©<O0.

A. Flat potential (z=0): Sinai model
Following the analysis of Sec. IV A, in the limit a—0
with keeping aT=s fixed,
—
V2s
KS(—r) (84)

Vo

exp[-M@T] —

Therefore, substituting r=xs/« and T=s/a, in the limit
a—0, Eq. (83) reads

R $X, 8 4 \2s
dxe X _IIDC _|_ = ) KO — |- (85)
0 a a a In” « Vo

This suggests the scaling form

—_— 1
Lot T) = ——g,t/T 86

loc(| ) Tln2 Tgl( ) ( )
in the limit — o0, T— o but keeping x=¢/T fixed. Substitut-
ing this scaling form in Eq. (85), after straightforward sim-
plification one obtains

0 /2_
f dxe™g,(x) = 4K%< \_rs) . (87)
0 Vo

Now direct comparison of the above equation with Eq. (57)
gives g,(x)=f,(1/x)/x* where f,(x) is given by Eq. (62).
Substituting f;(1/x) one obtains the scaling function g,(x) as

2
g1(x) = = VK (1/0%), (88)
X
which is displayed in Fig. 7. The scaling function increases

as g,(x) =\2mox~"? exp(=2/0ox) for small x and decays as
g1(x) ~2 In(ox)/x at large x.
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FIG. 7. The scaling function g;(y) in Eq. (86). The solid line is
plotted by using Eq. (88), and the dashed line is plotted by using the
limiting forms g(x)=~\2mox™"? exp(-2/0x) for small x and
g1(x)~2In(ox)/x for large x.

B. Unstable potential (x> 0)

In this case the right-hand side of Eq. (83) is given by

- K2(\2a(1 + oT)lo)
exp[— Na)T]= (1 + oT)"—=
pl-=NMa)T]=( K,Z}( V%/O’)

. (89)

with v=pu/0o. Putting @=0 in the above equation gives the
normalization condition [7,,.(t| T)dt=(1+0aT)~>", which im-
plies that for the unstable potential, where the force is repul-
sive from the origin, the particle escapes to +> with prob-
ability 1—(1+0T)2” and the disorder-averaged PDF I, .(¢|T)
obtained by inverting the Laplace transform in Eq. (83) rep-
resents only those events where the particle does not escape
to +00.

Now in the limit of «— 0 with aT=s keeping fixed, one
gets

I /_ v
b n
KV<£) HM]W/Z(%) , (90)
o 2 \s
!,— /_
Ra(l + 0T 12
R 20D ()
g Vo

Therefore Eq. (89) becomes

- 4 2v /2_ 2
expl— A(a)T]H(zoj.)ThT(w[s”/zK(\\’,—g)} . (92)

In the corresponding limit 7— o, t— o, but keeping their
ratio x=¢t/T fixed, using the scaling form
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0_21/— 1 g0 (37)

FIG. 8. The scaling functions g,(x) in Eq. (93) plotted by using
Eq. (95). v=|ul/o.

[ 1
Lo (f]T) = W&(ﬂ 7) (93)

in Eq. (83) one finally arrives at the Laplace transform
re
\2s

- —S5X _; v/2 (_) ’
foe gz(x)dx_(Zoj)’Tz(v){s K, i } (94)

The Laplace transform can be inverted with respect to s to
obtain the scaling function g,(x), and in fact the inversion
has already been done in Sec. IV C. Comparing the above
equation with Eq. (71) readily gives g,(x)=0"2"f,(1/x)/x*
where f,(x) is given by Eq. (75). Substituting f,(1/x) gives

20’\“/7_7 6—2/0):
( U(1/2,1 + v,2/ox), (95)

UZV]“Z(V) O_x)2v+1

where U(a,b,x) is the confluent hypergeometric function
of the second kind, whose small- and large-x behaviors
are given in Eq. (76). The scaling function g,(x)
is displayed in Fig. 8. The scaling function increases as
g2(x) ~exp(=2/0x) for small x and eventually decreases for
large x as g,(x) ~ 1/x?". In particular, for v=1/2 it has a very
simple form g,(x)=\2/mwo>x™3? exp(=2/ o).

g (x) = [

C. Stable potential (u<0)
Following the analysis of Sec. IV C, in the limit «—0,
keeping aT'=s fixed one gets

—
\V2s

/ 2
exp[- NMa)T] = m |:SV/2K,,< \’,—;):| . (96)

with v=|ul/o.
On the other hand, in the corresponding limit 7— o,
t— oo, but keeping t/T=x fixed, using the scaling form
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— 1
Iloc(t|T) = }g3(t/T)’ (97)

one gets

f dre1,.({|T) = J dxe™"g5(x), (98)
0

0

with s=aT. Therefore, in this scaling limit Eq. (83) becomes

!/_
V2s

N —sx _ 4 | V2 i ’
Jodxe g3(x)‘<2o)”r2<v>[s K”( \G)] 9

Now comparing the above equation with Eq. (94) one gets

g3(x) = 0?"g,(x), (100)

where the scaling function g,(x) is given by Eq. (95) and
displayed in Fig. 8. While /,,.(t|7) has the same scaling
function (up to a multiplicative factor of ¢2*) for both stable
and unstable potentials, the physical behaviors, however, are
quite different. For the stable potential, /,,.(¢|T) is normal-
ized to unity. Note that the scaling function g;(x) becomes
narrower as one increases v, as expected since the particle
becomes more localized near the origin. For the unstable
potential, on the other hand, the weight of I,,.(¢| T) decreases
as (oT)7?%, as one increases v, as expected since when the
repulsive force from the origin becomes stronger, the particle
escapes to = with a higher probability.

VII. OCCUPATION TIME WITHOUT DISORDER (o=0)

In this case V(x)=6(x) corresponds to T in Eq. (2), being
the occupation time in the region x>0, and P(T|¢,0) in Eq.
(15), being P, (T|t)—the PDF of the occupation time for a
given observation time window of size ¢ and the initial posi-
tion of the particle x(0)=0. Again, as before, we need to
solve the differential equation (16) for x>0 and x<0 sepa-
rately and then match the solutions at x=0. The matching
condition for the slope of the solutions is obtained by inte-
grating Eq. (16) across x=0. Thus the matching conditions
are

1,(0)=u_(0)=u(0), u,(0)=u’(0), (101)

where u,(x) satisfy the following differential equations:

%uﬂ:(x) + Fu,(x) - (a+pu,(x)=-1, (102)
for x>0, and
%uﬁ(x) + F(x)u! (x) —au_(x)=-1, (103)

for x<<0. The boundary conditions of u,(x) when x — £ are
obtained from the fact that if the starting position goes to +%,
the particle will never cross the origin in finite time,
P(T|t,x—°)=8(t-T) and P(T|t,x— —»)=48(T), and hence,
from Eq. (15),

u, (%) = oou(=0)=—. (104)

a+p

R I
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Writing  u,(x)=1/(a+p)+B,y,(x) and u_(x)=1/a
+B_y_(x), we obtain the homogeneous differential equations
for y.(x) as

—y+(X)+F(X)y+(X) (a+p)y,(x)=0,  (105)

for x>0, and

1 14 !

Ey_(x) + F(x)y (x) — ay_(x) =0, (106)
for x<<0, with the boundary conditions y,(x—0)=0 and
y_(x—=2)=0. The constants B, are determined by the
matching conditions given in Eq. (101), which can be rewrit-
ten as

clv +B_y_(0) =u(0), (107a)

1
+B,y,(0)=

B,y (0)=B_y(0). (107b)

Eliminating the constants from Eq. (107), we obtain the
double Laplace transform of the PDF of the occupation time,

u(0) = J e f ATV (7 = ep) | Ber)
0 0 o o+ P
(108)
where
[ 20
flen= [z_(m 2.0 ] ’ (109
_ - Z+(O)
Glar= [z_(m —2.(0) ] | (110
and z.(x)=y.(x)/y.(x). Note that
el(a7p)+€2(a’p)=l' (111)

Putting p=0 in Eq. (108) gives u(0)=1/a, and hence invert-
ing the Laplace transform with respect to « readily verifies
the normalization

1
J Poo(TINdT =1.

0

(112)

For any symmetric deterministic potential the distribution
of the occupation time is symmetric about its mean
(Ty=t/2—i.e., Py..(T|t)=P,..(t—T|t). Then, it follows from
this symmetry that

€i(a+p,—p)={r(ap). (113)

In other words, the double integral in Eq. (108) remains in-
variant under the following simultaneous replacements:
(a+p)— a and a— (a+p). Thus under these replacements
one must have z,(0)—-z_(0) and vice versa, which
also implies that z,(0)=-z_(0) for p=0. Equivalently,
€(a,0)=¢€,(a,0)=1/2, which also directly follows from
Egs. (111) and (113).
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Therefore if one splits the distribution function into two
parts, Po.(T|t)=R,(T|t)+Rx(T|?), such that

f dte™™ f dTe™R,(T|t) = naep) )

e} t € ,
f dte™™ f dTe"’TRR(T|t)=M,
0 0 a+p

then it follows from the above discussion that R, (t—T)|7)
=R(T|t). This symmetry of the distribution will come in
handy later. Moreover, putting p=0 and inverting the
Laplace transforms with respect to « gives the normalization
for each part separately:

(114)

(115)

fRL(T|t)dT= erR(T|t)dT= % (116)
0 0

As an example, we first consider the pure case =0 in the
force given by Eq. (6). For F(x)=pu sgn(x), the solutions of
Egs. (105) and (106) are obtained as

yo(x) =y, (0)exp{- [+ Vu* + 2(a+p) I}, (117)
for x>0, and
y_(x) =y_(0)exp[(u + Vpu* + 2a)x], (118)

for  x<0. These give the
2:(0)=y".(0)/y.(0) as

z,(0)

expressions  for

[
=—[u+Vu" +2(a+p)],

7.(0) =+ Vu? +24a]. (119)

In the following subsections we will consider the three dif-
ferent cases (i) w=0, (i) u>0, and (iii) ©<O0.

A. Flat potential (u=0)

For u=0, using z,.(0)=—2(a+p) and z_(O):V"% from

Eq. (108) we get

o] t 1
f dte™ f dTe " Py (T|t) = —=. (120)
0

Va(a+p)
Inverting the double Laplace transform with respect to p and
then with respect to « finally reproduces the well-known

Lévy’s “arcsine” law [11] for the PDF of the occupation time
of an ordinary Brownian motion,

1
P (Tl) = ———=, 0<T<t. (121)
occ | 7T\/T(l‘—T)

The distribution P, (T|t) diverges on both ends 7=0 and
T=t, which indicates that the Brownian particle “tends” to
stay on one side of the origin.

B. Unstable potential (x> 0)

Since for u>0 the force is repulsive from the origin
x=0, one would expect the occupation time distribution to be
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convex (concave upward), with minimum at 7=¢/2. Now in
the limit of large window size, r— o, the part of the distri-
bution P..(T|?) to the left of the midpoint T=¢/2 approaches
R,(T|t), as the midpoint itself goes to .

By making a change of variable z=at, it follows, from
Eq. (114)

o Zla
f dze_zf dTe P R, (T|z/a) = €,(a,p).  (122)
0 0

Now the large-t limit of R, (T|f) can be obtained by
taking «— 0 in the above equation, where one realizes that
R,(T|t) approaches a steady (z-independent) distribution,
R (T|t— =) — R,(T), whose Laplace transform is given by

f ’ dTeP"R,(T) =€,(0,p), (123)

0

where €,(0,p) is obtained from Eq. (109), by using z.(0)
from Eq. (119), which gives

2u

— . (124)
3u+ Nt +2p

€,(0,p) =

The above Laplace transform can be inverted with respect to

p, which gives
\t’/—) ] b

(125)

R(T) = u\2e 77

1 3u (9,u2 ) (
X| —=—=—-—F=exp| —T |erfc
[ VaT 2 P\ v

w
s

with the normalization [(R;(T)dT=€,(0,0)=1/2.
The limiting behavior of the distribution is given by

2
R/(T) = ——, (126)
S Vet
for small 7, and decays exponentially for large 7,
~ 2
\1“’2 e M T2
R/ (T) = — =" an - (127)
OuNT T

C. Stable potential (u<0)

As we discussed earlier in Sec. III C in the context of the
local time, for a generic stable potential U(x) the system
eventually becomes ergodic at large ¢ and hence the average
(0[x(r)]) approaches its stationary value (#[x(2)])—Z,/Z,
where Z=[%_¢2UWdyx is the equilibrium partition function
and Z,=[ e 2UWdy is the restricted partition function.
Therefore, for large ¢ the average occupation time
(T)y=[(fx(t")])dt’ scales linearly with 7:

~ (128)

Note that when the potential U(x) is symmetric about zero,
the average occupation time (7)=¢/2 for all 1.
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From the definition 7T—(T)=[{{6[x(¢")]-(6[x(¢")])}dt’,
it follows that when T—(T), the random variables
A x(t')]-(6[x(¢")]) at different times ¢’ become only weakly
correlated. Then, in the limit when 7 is much larger than the
correlation time between these variables, one expects the
central limit theorem to hold, which predicts a Gaussian
form for the distribution of the occupation time 7 near the
mean value (7),

2
(T-(T) ] (129)

2372
where the variance 3%=(T?)—(T)? can be obtained from the
Laplace transform of the moments,

Pocc(T|t) -~ eXp|:_

J'u(0)

: 130
PR (130)

p=0

Jw (T"e “dr=(-1)"
0

with u(0) given by Eq. (108).

For the particular attractive force F(x)=—|u|sgn(x), using
7.(0) from Eq. (119) in Eq. (108) and taking derivatives with
respect to p we get

au(0 1
_eoy L (131)
(?p p=0 201
Fu(0 1 1 1
WO L Lot am
ap” lp=0 200 Apia o

Therefore inverting the Laplace transform in Eq. (130)
with respect to « immediately gives (T)=t/2 for all ¢t and
(T?y=12/4+1/4u? for large t which gives 3%=t/4u’.

VIII. OCCUPATION TIME WITH DISORDER (o> 0)

Now we consider the occupation time when the disorder
is switched on: >0 in Eq. (6). Our aim is to calculate the
disorder-averaged P..(T|t). As one realizes from Egs.
(108)—(110), to calculate P, .(T|t) one needs the distribution
of —z,(0) and z_(0), which are given by Egs. (B9) and (B11)
with a,=a+p and a_=a, respectively. In the following sub-
sections, we will consider the three cases (i) w=0, (ii)
w>0, and (i) p<O0.

A. Flat potential (x£=0): Sinai model

We first consider the diffusive motion of a particle in a
continuous Sinai potential, where the potential itself is a
Brownian motion in space. In the limit of large window size
t the left half of the disorder-averaged PDF of the occupation
time R;(T|t) for 0<T<t/2 is obtained by taking the disor-
der average in Eq. (114). The right half of the distribution for
t/2<T<t is just the symmetric reflection of the left part.
The detailed calculations for R, (T |t) are presented in Appen-
dix C.

We find that R,(T|t) has a large-¢ behavior,

— 1
R (T|r) = ER(T)’ (133)

where the function R(7) is independent of ¢. The limiting
behaviors of R(T) are given by
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Ecr
R(T) = ~=, (134)
NaT
as T—0, and
R(T) L (135)
27

for large T.

B. Unstable potential (x> 0)

For ©>0, we find that disorder does not change the
asymptotic behavior of the distribution for the pure case
qualitatively. The calculations are presented in Appendix D.
We find that in the limit t— o the left half of the disorder-
averaged occupation time distribution tends to a
t-independent form

R.(TI) = R,(T). (136)

In fact, the small-T limit of R;(T) remains the same as in the
pure case:

[
/

O A
R, (T) = T

(137)
\NaT

For large T, the distribution R;(T) still decays exponentially,
R(T) ~ e, (138)

where the decay coefficient b is, however, different from the
pure case [see Eq. (D17)].

C. Stable potential (u<0)

This particular situation, where one finds the interplay
between two competing processes, is a very interesting one.
On the one hand, as we discussed in Sec. VII C, the stable
potential in the absence of the disordered potential makes the
system ergodic in the large- limit, and as a result the PDF of
the occupation time is peaked at =¢/2 and decays fast away
from it. On the other hand, as we discussed in Sec. VIII A,
without any underlying deterministic potential the disorder-
averaged PDF of the occupation time is convex (concave
upward) with a minimum at 7=¢/2 and diverges at both ends
T—0 and T—t. Therefore, if both the stable potential and
disordered potential are included, as their relative strength
v=|ul|/o is varied, one expects a phase transition at some
critical value v, where the system loses ergodicity.

In the scaling limit where both #— o and 7— oo, but their
ratio y=T/t is kept fixed, we find that the disorder-averaged
PDF of the occupation time has a scaling form

PonTi) = - (). (139)
The calculation of the scaling function f(y) is presented in
Appendix E, where we find the beta law

1
B(v,v)

foly) = -y1"", 0=y=<1, (140)
where v=|u|/o and B(v,v) is the beta function [44]. Now, if

one tunes the parameter v by varying either u or the disorder
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FIG. 9. The scaling functions fj,(x) in Eq. (139) plotted by using
Eq. (140).

strength o, the distribution P, (T|¢) exhibits a phase transi-
tion in the ergodicity of the particle position at v,=1 (Fig. 9).
For v<w, the distribution f(y) in Eq. (139) is convex with a
minimum at y=1/2 and diverges at the two ends y=0,1.
This means that the particle tends to stay on one side of the
origin such that 7 is close to either O or ¢. In other words the
paths with a small number of zero crossings carry more
weight than the ones that cross many times. For v> v, the
scenario is exactly opposite, where f;(y) is maximum at the
mean value y=1/2, indicating that the particle tends to spend
equal times on both sides of the origin x=0, such that paths
with a large number of zero crossings, for which 7' is closer
to t/2, carry larger weight. A similar phase transition in the
ergodicity properties of a stochastic process as one changes a
parameter was first noted in the context of a diffusion equa-
tion [19] and later found for a class of Gaussian Markov
processes [20] and in simple models of coarsening [47,48].

A very interesting observation about Eq. (140) is that for
v=1/2, the result is the same as Lévy’s result for the one-
dimensional Brownian motion given by Eq. (121). It seems
as if the attractive force cancels the effect of disorder exactly
at v=1/2. However, this is no longer true in the context of
the local time.

IX. INVERSE OCCUPATION TIME WITHOUT DISORDER
(0=0)

In this case I(¢t|T,0) in Eq. (21) is replaced with I ..(¢|T),
which is the distribution of the time ¢ needed to observe the
particle with a starting position x=0, until the total amount
of time spent on the positive side x>0 is 7. The correspond-
ing u(0) in Eq. (21) with x=0, which is the double Laplace
transform of the PDF of the occupation time, has already
been evaluated in Sec. VII, which is given by Eq. (108).
Substituting u(0) in Eq. (21) gives

051102-17



SABHAPANDIT, MAJUMDAR, AND COMTET

o0 o0 6 ,
J dTePT f dte-”'IOCc(z|T)=M, (141)
a+p

0 T

where {,(a,p) is given by Eq. (110). Comparing the
above equation with Eq. (115), one can infer that I . (¢|7)
and Rg(T|t) have the same functional form—i.e.,
I,oo(t| T)=Rg(T|?) and especially for the symmetric determin-
istic potential I, .(¢t|T)=Rg(T|t)=R,(t-T|?).

It is useful to present the above equation in the following
form:

Jo dze_zfo dTe_“TIOCC<T+ 2%) ={,(B,a-p),

(142)

which has been obtained by substituting p=B—a in Eq.
(141) and subsequently making the change of variables
BT=z and 7=¢—T. On the right-hand side, we have substi-
tuted €5(a, B—a)=4€,(B, a—B), using Eq. (113), and €,(«, p)
is given by Eq. (109). Now by taking the limit 83— 0 in Eq.
(142), one obtains the large-T behavior of I . (¢|T).

For the pure case, 0=0 in Eq. (6), we have already ob-
tained z,(0) in Sec. VII which are given by Eq. (119) and
hence we can evaluate €,(a,p) and €¢,(a,p) by using Egs.
(109) and (110), respectively. In the following subsections
we will analyze the behavior of I, (t|T) for the cases (i)
=0, (ii) w>0, and (iii) ©<O0.

A. Flat potential (u=0)

For ©=0, which is the case of Lsimple Brownian motion,
7,(0)=—y2(a+p) and z_(0)=\2a. Therefore, using Eq.
(110), from Eq. (141) we get

o0 oo 1
J dTe™T f dte™ .. (1| T) = =

/
0

T \ea+p(\/;+ Va+p)
(143)

Now inverting the Laplace transform with respect to p gives

f dte1,..(1|T) = erfc(vﬁ), (144)

T

and further inverting the Laplace transform with respect to «
gives

!’_

\T

Loe(1|T) = —F=06t - T), (145)
Nt —T

with the normalization condition [7/,..(f|T)dt=1, which is
readily checked by putting =0 in Eq. (144). The inverse
occupation time has nonzero support only for > T, as shown
in Fig. 10. -

Note that, since Rg(T|1)=I,..(t|T)=\T/mt\i-T and
RL(T|t)=RR(t—T|t)=V’E‘/ T, adding the two parts,
Pooo(T|t)=R,(T|t) +Rp(T|t)=1/\T(t—T), one recovers Eq.
(121).
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FIG. 10. The PDF of the inverse occupation time for simple
Brownian motion.

B. Unstable potential (x> 0)

For >0, although one can invert the Laplace transform
in Eq. (141) with respect to p exactly; the other Laplace
transform with respect to « can be inverted only in the large-
T limit. Therefore, to keep the presentation simpler, we will
consider the large-T behavior of I, (t|T) by analyzing Eq.
(142) in the limit 8—0.

By using z.(0) from Eq. (119) in Eq. (109), one gets

2u

—

€,00,0) = —F—.
1 3u+ N+ 2a

(146)

Therefore, Eq. (142) suggests that I,..(¢|7) should only de-
pend on the difference (¢—T) at large T:

Iocc(t|T)=Il(t_T)~ (147)

Substituting this form in Eq. (142) in the limit 83— 0 gives

f dre™T,(7)=4€,(0,), (148)

0

where putting @=0 gives the normalization [jI,(7)dT
=¢,(0,0)=1/2, indicating that the particle can escape to —
with probability 1/2 for the unstable potential (the force is
repulsive from the origin). Now inverting the Laplace trans-
form with respect to « gives

1 3 9u? 3p
(7= ,uv/ze"‘zﬁz{,: _2E exp(%r)erfc(—#\’ )} ,

Nar 2 V2
(149)
The limiting behavior of this distribution is given by
\2
(==, (150)
NTT

for small 7=(¢—T), and decays exponentially for large
=(t-T),
E —ulm2

V2 e
I(T)z
! 9

— =5 151
w7 (151)
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C. Stable potential (uz<0)

It is reasonable to consider the difference variable =T
instead of ¢, as t=T. Therefore, we write

Iocc(t|T)=12(t_T,T)' (152)
Substituting this form and p=8-« in Eq. (141) one gets

o] o0 6 i _
f dTe P" J dre™*L(7,T) = GBa=p ; ’8),

0 0

(153)

where we have substituted €,(a, B—a)=¢,(8,a—B) on the
right-hand side, using Eq. (113). Using z.(0) from Eq. (119)
for © <0 in Eq. (109) gives

W +28-
el(ﬁ,a—m:[ w26l . (154)

Vu? +28+ \e’/,u,2 +2a-2|u
Therefore, taking the small-8 limit in Eq. (153) gives
dTe_'BTf dre™ I, (7,T) = ,
JO 0 B+ N + 20 - p?
(155)

and inverting the Laplace transform with respect to B3 gives

f dre™Iy(7,T) = exp(u’T — |u|TVu?* + 2a), (156)

0

where putting a=0 confirms the normalization condition
JoL(7,T)dr=1. Now by inverting the other Laplace trans-
form with respect to « one gets the distribution

mT
L(r,T) = #e‘“z“‘ i, (157)

ar
where 7=¢-T.
X. INVERSE OCCUPATION TIME WITH DISORDER
(0>0)

In the presence of disorder—i.e., >0 in Eq. (6)—taking
the disorder average in Eq. (141) gives

0 © ﬁ
f dTe'pr dte™ I, (t|T) = M,
a+p

0 T

(158)

where €¢,(a,p) is obtained by taking the disorder average of
Eq. (110), using the distributions of —z,(0) and z_(0) given
by Egs. (B9) and (BI1), respectively, with a,=a+p and
a_=a.

It is useful to consider a different form of the above equa-
tion, which is obtained by taking the disorder average of Eq.

(142),
fdze j dTeaIOCC<T+,B|,B> €(,8a B,

(159)

where by taking the limit 83— 0, one obtains the large-7 be-
havior of I, (¢|T).
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A. Flat potential (;=0): Sinai model

We will now study the large-T behavior of 1,..(t|T), for
the Sinai potential (w=0), by analyzing Eq. (159) in the limit

BL—0.
It follows from Eq. (C2) that
T mi(B.a— B)
L(Ba-B)=—T"", 160
1(B.a=p) Q.0 (160)
where m;(a,p) is given by Eq. (C3) and
12 12
Q. _21<0(‘ B), 0_=2K (‘ “). (161)
o o
In the limit 8— 0, since (), ~—In B; hence,
N m;(0, @)
€,(B.a—B) ~ — ; (162)
(fra=p [ 2K,(\2alo)In B]
which suggests the following scaling form at large 7
1
Iocc(t|T) _13(t - T) (163)

Therefore, in the limit 8— 0, substituting the above scaling
form in Eq. (159) and using Eq. (162) one gets

f dre™I;(7) = _mQ.a)

. (164)
0 2K, ( V2ol o)

However, the above Laplace transform is the same one given
by Eq. (C11) in Appendix C, where « is replaced by p.
Therefore we can directly borrow the results obtained there.
Using the results from Eq. (C19) gives

2
13(7')z,——0- as 7— 0, (165)
T
and results from Eq. (C26) give
1
Ii(7) ~— as 17—, (166)
27

B. Unstable potential (p>0)

For u>0, Eq. (159) suggests that in the large-7" limit,
I,..(¢t|T) will only depend on the difference (t—T),

Iocc(t|T) = 14(t - T)

Therefore, in the limit 8— 0, using the above form in Eq.
(159) one gets

(167)

f“’ dre™I4(7) =4€,(0,). (168)
0

However, the above Laplace transform is the same one given
by Eq. (D3) where « is replaced by p. Therefore borrowing
the results from Appendix D readily gives

2

14(7-) =~ >
NTT

(169)

for small 7, and
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L(7) ~ e, (170)

for large 7, with the same constant b as in Eq. (D16).
The normalization condition [I,(7)d7=€,(0,0)=1/2 in-
dicates that the particle escapes to — with probability 1/2.

C. Stable potential (u<0)

We are interested in the behavior of I,.(f|T) in the scal-
ing limit where — % and T — o, but the ratio x=¢/T is kept
fixed. Substituting T=z/«, t=xz/ @, and p=as in Eq. (158),
we get

* * z Xz, 2 1 —ms(a,s
f de dze—(s+x)zl_locc(_|_):| — #’
| 0 a a a I+s

(171)

where ms(a,s)=4€(a,as)=1-4€,(a,p), given by Eq. (E6).
The above equation suggests the scaling form

— 1
Iocc(t|T) = }go(f/T% (172)
with the normalization [ gy(x)dx=1, which follows directly
from the normalization [71,..(t| T)dt=1. By substituting the
above scaling form in Eq. (171) in the limit a—0, after
simplification one gets

f ) {X;l}go(x)dx= y(0,5),
xX+s

1

(173)

where m5(0,s) is given by Eq. (E16). By making a change of
variable y=1/x, Eq. (E16) reads

1 “lx=1](x=1""
1713((),3):B(V’V)f1 [x+s] 2 dx.

Therefore, comparing Eqgs. (173) and (174) readily gives the
inverted beta law

(174)

1 (x-1D"!
B(v,v) x*

gox) = , x>1, (175)
which is displayed in Fig. 11. The scaling function g,(x) has
a maximum at x=2v/(v+1) for v>1. However, gy(x) di-
verges near x=1 for v<<1. Note that for v=1/2, Eq. (175)
gives identical results to that of a pure Brownian motion

(u=0 and o=0), given by Eq. (145).

XI. CONCLUDING REMARKS

In this paper we have considered the motion of a particle
in a one-dimensional random potential. We have presented a
general formalism for computing statistical properties of
functionals and the inverse functionals of this process. We
have used a backward Fokker-Planck equation approach to
calculate the PDF of these functionals for each realization of
the quenched random potential. The most difficult part of the
problem is to carry out the disorder average on these PDF’s.
Thus to demonstrate the formalism explicitly, we have cho-
sen the external potential to be the combination of a deter-
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FIG. 11. The scaling functions go(x) in Eq. (172) plotted by
using Eq. (175).

ministic part and a random part, U(x)=—pu|x|+ VoB(x),
where B(x) is the trajectory of a Brownian motion in space.
The case u=0 in the potential corresponds to the Sinai
model. The deterministic part of the external potential is
stable for © <0 and unstable for w>0. The PDF’s of the
functional and the inverse functional vary from one realiza-
tion of B(x) to another, and in this paper we have shown how
to carry out the disorder average on them, for two particular
functionals: namely, the local time and the occupation time,
and their inverse. Despite the simplicity of the model, we get
very rich and interesting behaviors by tuning the parameter
m/ o, which we have summarized in Tables I-III, for u=0,
pu>0, and ©<<0, respectively. In many cases the disorder
changes the behavior of the PDF drastically from the pure
case (0=0).

A very interesting phase transition in the ergodicity of the
particle position occurs at a critical value of the parameter,
|u|/o=1, when the deterministic part of the potential is
stable (1 <0). For |u|/o<1, when the particle gets trapped
in the wells of the random potential, the deterministic force
—|m|sgn(x) is not strong enough to lift it from the well and
push it towards the origin and hence there are a small num-
ber of zero crossings. On the other hand, for |u|/o>1, the
strong deterministic force sends the particle frequently to-
wards the origin, and hence the system becomes ergodic.
This change in the ergodic properties shows up in the quali-
tative change in the curvatures of the disorder-averaged
PDF’s when the parameter v=|u|/o passes through unity.
While for ¥<<1 the disorder-averaged PDF of the occupation
time P, (T|t) is concave upward with a minimum at
T=t/2 and diverges at both ends 7=0 and T=¢, for v>1 it is
concave downward, which goes to zero at the two ends
T=0 and T=t, and has a maximum at 7=¢/2 (see Fig. 9). In
the context of inverse occupation time, while for ¥<1, the
disorder-averaged PDF I, (t|T) diverges near its lower end
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t=T and decreases monotonically as ¢ increases; for v>1, it
has a maximum at r=[2»/(v+1)]T and goes to zero at both
ends =T and r— (see Fig. 11). Similarly, the disorder-
averaged PDF of the local time Py,.(7|f) diverges near the
lower end T=0 and decreases monotonically as T increases
for v<<1. On the other hand, for »> 1, it has a maximum and
goes to zero at both ends T=0 and T—  (see Fig. 5).

For the stable potential, another very interesting observa-
tion is that at |u|/o=1/2, in the limit T— c and ¢— o while
keeping the ratio 7/t fixed, the exact asymptotic disorder-
averaged PDF’s of the occupation time P, (7|t) and inverse
occupation time /(| T) become exactly identical to the re-
spective PDF’s P,(T|t) and I ..(¢| T) for the simple Brown-
ian motion (u=0 and ¢=0). It looks as if at the particular
value |u|/o=1/2, the effect of disorder is exactly canceled
by the deterministic stable potential. However, a similar con-
clusion is not true in the context of the local time and inverse
local time. Therefore, a physical understanding of what ex-
actly happens at this particular value of the parameter will be
extremely useful.

There are several directions open for pursuing research
further in this area. In this paper we have considered only the
average of the PDF’s over disorder. However, in many cases,
as we have seen in this paper, the disorder broadens the
distributions considerably. For example, for the unstable po-
tential («>0), even though for each realization of random
potential the local time has a narrow exponential distribution,
by taking the disorder average one gets a broad power-law
distribution, which is the indication of large sample-to-
sample fluctuations and lack of self-averaging. Therefore, in
this situations knowledge about the disorder-averaged PDF
(first moment) is not enough, and one requires to compute
the other higher moments (over disorder). Thus extending
our formalism to compute the full distribution (over disor-
der) of the PDF will be very useful.

The random part of the potential we have considered in
this paper is very particular, where the barrier heights grow
as \x. However, in realistic systems the random potential
remains of order 1 throughout the sample. Therefore, it will
be very interesting to extend this formalism to more realistic
random potentials.

Recently several asymptotically exact long-time results
for other quantities in the Sinai model were obtained by us-
ing a real-space renormalization-group method [39]. Using
that method, reproducing the exact results obtained in this
paper remains a challenging open problem. Another interest-
ing direction is to study the properties of functionals of a
more general non-Markovian stochastic process in random
media and to extend our results to higher dimensions.

APPENDIX A: PDF OF THE LOCAL TIME IN THE CASE
OF THE STABLE POTENTIAL, #<0 AND =0 IN
Eq. (6)

In this appendix we will derive the PDF of the local time
P,.(T|t), for the stable potential (. <<0) in the absence of
disorder (0=0). In this case by solving Eq. (25) with the
boundary conditions y, (x—©)—0 and y_(x—-°)—0 we
get
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¥+(x) = y,(0)exp[F (= v+ V1? + 2a)x], (A1)

where v=|u|. Substituting these results in Eq. (28) we get
Ma)=—v+\1?+2a. Therefore the Laplace transform G(a)
in Eq. (30) becomes

—_—
— v+ +2a

G(a) = exp[— (- v+ 1P +2a)T].
(A2)
Now making a shift a=B-1?/2 in Eq. (30) yields
fm Bir 12112 5 T e 2T
dte PTeV 2P, (T|t)]= \V2e"T———=, A3
0 [ loc( | )] \'/E+ V/\E ( )

where the right-hand side is the Laplace transform of

eVZ’/ZPIOC(T|t). Inverting the Laplace transform with respect

to B and after simplification gives the exact distribution of
the local time for all 7 and t,

P (T|t) = 7—3[”‘ w21 _ 20T erfc(l—}\’rt+ ,—7;) ,

Nt 2 \2t

(A4)

where erfc(x) is the complementary error function. Note that
Eq. (A4) reduces to Eq. (33) for v=0.
For large ¢, since

v - T 1 v - T -1
erfc =Nt+ = |~ =Nt =
V2 \2t Nar| V2 V2t

X ( { 2 s T ]2) (A5)
exp| - | =Vt+ =1 |,
P V2 \/2_t

Eq. (A4) simplifies to

~
T 2
} \_e—(T— w2t (A6)

T+ vt \e’,;

Ploc(T|t) = |:

Putting v=0 in the above equation one still recovers
the result given by Eq. (33). For nonzero v, near the mean
(T)=vt, the PDF of the local time reduces to a Gaussian one

(T — )2
e (T = vr) /Zt.

Ploc(T|t) = (A7)

N2t

APPENDIX B: PDF OF THE SLOPE VARIABLES Z,(0)
THAT APPEAR IN THE DISORDER-AVERAGE
COMPUTATIONS

Both in the contexts of local and occupation time we have
a homogeneous differential equation of the type

1 "

22+ FO)yL(x) - a.y.(x) =0, (B1)

with  the boundary conditions y,(x—%)—0 and

y_(x——0)—0, and the force
F(x) = psgn(x) + Vo), (B2)

with (&(x))=0 and (&(x)&(x"))=8(x—x"). For each realization
of {&(x)} in the force F(x), the solution of Eq. (B1) is differ-
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ent, and for the disorder-averaged computations performed in
this paper we finally require the distributions of the stochas-
tic variables y.(0)/y.(0). In this appendix our goal is to find
these distributions.

By defining the variables

yalx)
7e(x) == —,
y:(%)
we find from Eq. (B1) that z,(x) satisfy the stochastic Riccati
equation

(B3)

2h(x) = = 22(x) = 2F(x)z, + 2a,. (B4)

However, now the boundary conditions for z, in Eq. (25)
are not specified. Therefore, for each realizations of {&(x)},
the solutions of z,(x) involve one unknown each that cannot
be eliminated due to the lack of boundary conditions. In
other words, to find the distributions of z.(x), we need the
respective distributions at some initial points, which are un-
fortunately not specified.

It turns out, however, that this difficulty can be bypassed
by a method [37,38,41] which lets us compute the distribu-
tions of z,(0) and z_(0) without having knowledge of the
boundary conditions on z,() and z_(—). We will present
the method below for the present context.

First we consider Eq. (B4) for x>0—i.e.,

() =—22(x) = 2 [ + \Gg(x)]zJ,(x) +2a,.

Note that z,(x)=y;(x)/y,(x) is negative. We make a change
of variable x=—7 and substitute z,(—7)=—exp[#(7)] in Eq.
(B5) to find that the new variable ¢(7) satisfies a much sim-
pler stochastic differential equation

dé _
dr

(B5)

b() +2\o&(7), (B6)
where &7)=&-7) and thus (&1)=0 and (&DNE&7))=8(r
—7'). The source term b(¢) is given by

b(¢)=—e®+2a,e7?+ 2. (B7)

Now we can interpret Eq. (B6) as a simple Langevin
equation describing the evolution of a Brownian particle
starting at time 7=-% in a classical stable potential
Ug()==[{b(@)do=e?+2a,e”-2up—(2a,+1). Even
though we do not know the starting position of the particle
¢(—0), it is completely irrelevant. No matter what the initial
position is, eventually after a long time—i.e., when 7 is far
away from —oo—the system will reach equilibrium and hence
the stationary probability distribution of ¢ is simply given by
the Gibbs measure

1 1 (¢
Py(p)=A eXP{— Z_Ucl(¢):| =A eXp{;f b(¢)d¢i|7

0
(B8)
where A is a normalization constant such that [* P (¢)d¢p

=1. Now changing back to the original variable z,(x) we
obtain the distribution of z,(0) as
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1 1 2a,
P+(_ Z+(0) =W) = &,2I_WM/U_1 exp[— 2—{w+ i}] ,

. o w
(B9)
where
- 1 2
Q,= f wH/ol exp{— —{w + &}}dw
0 20 w
—
2a
_ 2(2a+)ﬂ/2”1<ﬂ,a<%'+> . (B10)

Similarly for x<0, by putting F(x)=—u+o&(x) in Eq.
(B4) and substituting z_(x)=exp[ ¢(x)] one finds that ¢p(x)
satisfies the same differential equation in x as Eq. (B6) with
&x)=-&(x) and a, is replaced with a_. Therefore ¢(x) has
the same stationary distribution as Eq. (B8) and consequently
the distribution of z_(0) is same as that of —z,(0): namely,

P (z(0)=w)= in,u/o'—l eXp|:— ZL{W N %}] ’

o w
(B11)
with
* 1 2
O = f wHlo-l exp{— —{w + &}]dw
0 20 w
) V2a
=2(2a)*7K ;4 . (B12)
o
Note that the distributions of -z,(0) and z_(0)

given by Egs. (B9) and (Bll) have maxima at (u—o)
+(u—0)?+2a,, respectively, and in the limit o— 0 the dis-
tributions tend to delta functions around their maxima.
Therefore in the limit 0— 0 one recovers the pure case re-
sults by using the distributions P*(z,(0))=8(z,(0)+[u
+Vpu +2a,]) and P(z_(0))= &8(z_(0) - [+ Vu"+2a_]).

APPENDIX C: LEFT HALF OF THE
DISORDER-AVERAGED PDF
OF THE OCCUPATION TIME FOR
THE SINAI POTENTIAL (=0 AND o>0)

By taking the disorder average of Eq. (114) one gets

0 t 1
f dte‘“’f dTe P R, (T|H) = —€,(a,p). (C1)
0 0 @

Using the distributions of —z,(0) and z_(0) from Egs. (B9)
and (B11), respectively, with a,=a+p and a_=a, from Eq.
(109) one gets

(C2)

where
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wdwl 1 2(a+p)
m(a,p) = —exp|-—|\w+——
0 Wi 20' Wi

“ dw, 1 2a
X exp| = —(wy+— | (C3)
0 Wi+wy 20 Wy

\2(a+p) \a
Q+=2Ko(—p>, Q_=2K0(T). (C4)

o

and

Before we proceed further, let us take a detour to check
the normalization condition of R;(7|f). By putting p=0 in
the above equations we get

2
Q,=0.=0= 21(0(” 0‘) (C5)
g

m (a O) f f dWl dW2|: Wy :|
! Wi W1+W2
1 2a
Xexp —;T w1+w—
1
1 2a
Xexp _ZT w2+w— . (C6)
2

Note that the above integral must remain invariant under the
transformation w; <> w, of the dummy variables. Therefore
we get

“d 1 2 2
2m1(a,0)={ —wexp{——[w+—a]}] =0%
0w 20 w

(C7)

and

Therefore we have €,(a,0)=1/2, and inverting the Laplace
transform in Eq. (C1) with respect to « for p=0 gives the
normalization condition [(R,(T|t)dT=1/2.

Now we analyze the large-t behavior of Ry(T|t). By mak-
ing a change of variable z=at, it follows from Eq. (C1) that

J dze™ f  dTe " Ry(T.da) = Oy(ap).  (C8)
0

In the @— 0 limit, Q,=2K,(\2p/0) and Q_~—In a. There-
fore, from Eq. (C2),

— ml(O,P)
e 0= (aplon ]’ “

which suggest the following form for R, (T|¢) at large t:

1
R.(T]r) = —R(T) (C10)
where R(T) is independent of ¢.

Now using Egs. (C9) and (C10), in the limit «— 0, Eq.
(C8) gives
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f ’ a1 R(T) = —m 0P (C11)

0 2K,(\2plo)’

where m;(0,p) is obtained from Eq. (C3),

m;(0,p) = f—exp{ 21 <w1+2—p”
Wi

* e—w2/20
X dW2 .
0 wi+wy

By making a change of variables w;=20x and w,=20y in
the integrals in the above equation one gets

0.) fxdx [ (+ ”rd <
m,(0,p) = — ex X+ — ,
P 0 X P 20%x) | ), yy+x

(C13)
where now the integral over y can be expressed in terms of
the incomplete gamma function [44]:

(C12)

I
f dy =T (0,x). (C14)

0 y+x

Therefore, after straightforward simplification, Eq. (C13) be-
comes

my(0,p) = f %e‘xr(o,p/Zolx). (C15)
0

Now we will analyze the limiting behavior of R(T) for
small and large 7 by taking the limit of large and small p,

respectively.
Since for large p

o’
(0, pl20%x) ~ =22 g2, (C16)
from Eq. (C15), one gets
o9 =37 [ el -e+35 |
D)= 2
m(0,p o ), wexp| =\ x+ 2 5
[~ [~
242 12
= ‘,J’zq(ﬂ). (C17)
\p o

Since the asymptotic behavior of K,(x) is independent of v,
substituting m;(0,p) from above in Eq. (C11) gives

* 2
J dTe"R(T) =~ ~2, (C18)

0 \P

for small p, and by inverting the Laplace transform with
respect to p one obtains

—
f
/

V20
R(T) ==,
\mT

N

as T— 0. (C19)

To obtain the large-T behavior, we first consider the fol-
lowing integral:
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D(z) = f ‘i—xe-ﬂr(o, pl20x), (C20)
0

where D(1)=m,(0,p) follows from Eq. (C15). Now by dif-
ferentiating D(z) with respect to z, one can express it in
terms of the modified Bessel function as [44]

D'(z)=- f dxe™T(0,p/20%x) = — 2KO< \ij)
0
(C21)

Now by integrating back again with respect to z, we obtain
m(0,p) as

d 2 *
ml(o,p)=D(1)=2f —ZKO(”(fZ) =4

1 V“Z—p/ o

dx
Ko(x),
X

(C22)

where we have made the change of variable 2pz/0?=x>. The
p—0 limit can be obtained from the limiting behavior of the
integral [45],

fw Ko(x)dx
X

y

1
~ (i y)% asy—0, (C23)

which gives

1
m;(0,p) ~ z(ln p)? asp—0. (C24)

Since KO(\E'E/O')fv—% Inp, as p—0, Eq. (C11) gives

(C25)

” 1
J dTePTR(T) ~ - 5 Inp,

0

as p—0. Thus, inverting the Laplace transform with respect
to p one obtains

1
R(T) ~ 7 as T — oo, (C26)

APPENDIX D: LEFT HALF OF THE
DISORDER-AVERAGED PDF
OF THE OCCUPATION TIME

FOR pu>0

By taking the disorder average of Eq. (114) one gets

[ t 1
f dte‘“’f dTe™ R, (T|) = —€,(a,p). (D1)
0 0 @

As in the pure case (0=0), one also expects the 1— % be-
havior of the disorder-averaged distribution to tend to a
t-independent form

lim R, (T|r) = R,(T).

t—00

(D2)

Therefore Eq. (D1) becomes
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f ‘dTe"’TRL(T) =£,(0,p). (D3)

0

Using the distributions of —z,(0) and z_(0) from Egs. (B9)
and (BI1), respectively, with a,=p and a_=0, from Eq.
(109) one gets

1 2
€,(0,p): 0.0 j dw wh'o™ lexp{ Z’(Wl +w_lj>]
ulo —w2/20'
f T (D4)
Wi + %)
with
12
_2(217),41«/20[( <\ P>,
o
Q_=QRo)MT(ulo). (D5)

Now the integral over w, in Eq. (D4) can be expressed as

[44]
,u/a' w1/2o'F< + 1)1“( E,ﬂ>’
o o 20

fw Wg/tfe—w'Z/ZO'
dw,—— =
0 witw;

(D6)
where I'(a,x) is the incomplete gamma function. Therefore
Eq. (D4) becomes

iy (p)
€,00,p) = . (D7)
1 (20')M/U+1(2p)#/20-K/_L/0'(\”%/a—)
where
my(p) :f dwlw%"/"_le_p/m“r(— E,m) (DS8)
0 o 20

The small- and large-T behavior of R;(T) can be found by
analyzing Eq. (D7) in the limiting cases p—o and p—0,
respectively.

Making a change of variable w;=p/ox in Eq. (D8) and
then taking the p — % in the incomplete gamma function,

v P p_\H! ( L)
F<_ 0’20’2x) - (20’2x> eXp\~ 20%x )’ (D9)

gives

o0

my(p) = (20)*(2p)/! fo dxx™H exp{ (x + ﬁﬂ
(D10)

where the integral above on the right-hand side can further
be expressed in terms of the modified Bessel function as [44]
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JO ‘dxx—li/‘f exp{ (x + ﬁ)]

\’T
— 2(20_)#/0—1(2p)—,u/20+1/2K#/0_1<_p) . (Dl 1)
g

Since the large-x behavior or K ,(x) is independent of v, Eq.
(D7) simplifies to

/

€,(0,p) = ——
\p

as p — oo, (D12)

Therefore, by inverting the Laplace transform in Eq. (D3)
with respect to p, one gets

- ILL\’2
R(T) =~ =,
T

for small 7. (D13)

Now we will analyze the the large-T behavior by taking
the limit p—0 in Eq. (D7). It is straightforward to obtain
from Eq. (D8) that

(20’)2“/U+1I‘(,u,/0')
4 ’

[~ wo r/_
12 12
_F(ﬁ>(g> K’;}(r(ﬁ>’ (D15)
g \p g

for small p. However, if one takes the limit p—0 now in
K MU(v’Zp/cr) in the above expression, it only gives the nor-
malization condition [{R;(T)dT=1/2 and does not provide
any information about the large-T behavior of R;(T).

We make the ansatz

my(0) = (D14)
which gives

€1(O»P) =

R, (T) ~ 7T (D16)
for large T. Then the Laplace transform
* — 1
f dTe™P R, (T) =~ — (D17)
0 p+b

for small p. Therefore substituting Egs. (D15) and (D17) in
Eq. (D3), one can conclude that b is given by the zero of

K, 6(\ 2p/a) closest to origin in the left part of the complex-
p plane.

APPENDIX E: DISORDER-AVERAGED PDF
OF THE OCCUPATION TIME FOR u<0

Taking the disorder average of Eq. (108) gives

o t
f dte™™ f dTe TP, (T|t) = ——
0 0

+——t(ap),
+p ala+p)

(E1)

where we have substituted €,(a,p)=1-¢,(a,p).

We are interested in finding the behavior of P,..(T|?),
in the scaling limit r—o,T—c, but keeping 7/t=y fixed,
which corresponds to the limit of conjugate variables:
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a—0,p—0, keeping p/a=s fixed. Substituting z=at,
T=yz/a, and p=as in Eq. (E1), we get

2,2
f dYJ dZé‘_(l+S\)Z|: occ(y >:| =
a o

where m;(a,s)=€(a, as). Equation (E2) suggests the form

1 +sms(a,s)
(1+s) °~

(E2)

— 1
Pocc(T|t) = ;fO(T/t) (E3)

in the scaling limit — %, T— cc, while their ratio 7/t is kept
fixed. In the limit «— 0, by substituting the above scaling
form in Eq. (E2), it is straightforward to obtain

1
f dy fo») _
o 148y
where putting s=0 gives the normalization condition

I (')fo(y)dy=1. Using this normalization, the above equation
can be simplified to the following elegant form

1 +sm5(0,s)
(I+s)

(E4)

1
1-y
f ——foy)dy =m;(0,s). (Es)
o 1+sy
Now by using the distributions of z,(0) from Egs. (B9)
and (B11) with a_=a and a,=a(l+s), from Eq. (109) we
get

ms(a,s) =4 (a as) = dwl dw2
wq + 1)
o { 1 { 2a(1+s)H
Xw" exp| - —\wi+———
20 wq
1 1 2a
X wy " exp| - —ywat+ — (|, (E6)
20 Wy

where

Q+ — 2(2(1)—1//2(1 + S)_V/ZK,,(M) , (E7)
g

—
h
Q= 2(2a)_”/21(,,<¥> , (E8)

with v=|u|/o. Note that we simply cannot take the limit
a—0 in the integrals in Eq. (E6), as it diverges in that limit.
However, it is possible to extract the divergent contribution
outside the integrals which finally cancels exactly with the
divergence of (),. This is done by making the change of
variables

1+
al+s) o (E9)
oawy aw,

in the integral to get
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oo 2”(1+s) f f x'yr !
my(as) = x + (l +5)y
ol ool bt
exp| -y x+ YN exp| — y+202y .
(E10)

Now the limit @«— 0 can be taken in the above equation, as,
in this limit, Q, — o™ "(1+5)7"T'(v) and Q_— o’ "T'(v).
Therefore from Eq. (E10) we get

(0 S) 5 J yyv—l —yf xVe™ "
I'(v) o X+ (1 +s)y
(E11)

Now the integration over x can be expressed in terms of the
incomplete gamma function [44]

et? [T xPe™
I'(1-p)

I'(p,\) = dx [Rep<1,\>0],

X+ A\

(E12)

which gives
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v(1 +5)"

m3(0,s) = F(V)

f Ve (= v, (1 + 5)y)dy.
0

(E13)

The right-hand side, however, is one of the integral represen-
tation of the Gauss’s hypergeometric function F(a,f;7y;z)
[44], which gives

1
m3(0,s)=§F(1,v;21/+1;—s). (E14)
Now by using another integral representation [44]
1 ,B-1 y-B-1
Yy (1-y)
F(a,B;y;—5) = f Ty,
B(B.y-BJo  (1+sy)
(E15)
we get
-y v—-1
m3(0,s) = (1 =-y)]"dy, (E16)

B(v,v)Jy 1+sy

where B(a, 8)=I"(a)I'(B)/T'(a+ B) is the beta function [44].
Now by comparing Eq. (E16) with Eq. (E5), one imme-
diately gets

foly) = (-], 0sy<1. (El7)

1
B(v,v)
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